Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene).
نویسندگان
چکیده
Spatially selective electrodeposition of poly-3,4-ethylenedioxythiophene (PEDOT) thin films on metallic surfaces is shown to be an effective means of visualizing latent fingerprints. The technique exploits the fingerprint deposit as an insulating mask, such that electrochemical processes (here, polymer deposition) may only take place on deposit-free areas of the surface between the ridges of the fingerprint deposit; the end result is a negative image of the fingermark. Use of a surfactant (sodium dodecylsulphate, SDS) to solubilise the EDOT monomer allows the use of an aqueous electrolyte. Electrochemical (coulometric) data provide a total assay of deposited material, yielding spatially averaged film thicknesses, which are commensurate with substantive filling of the trenches between fingerprint deposit ridges, but not overfilling to the extent that the ridge detail is covered. This is confirmed by optical microscopy and AFM images, which show continuous polymer deposition within the trenches and good definition at the ridge edges. Stainless steel substrates treated in this manner and transferred to background electrolyte (aqueous sulphuric acid) showed enhanced fingerprints when the contrast between the polymer background and fingerprint deposit was optimised using the electrochromic properties of the PEDOT films. The facility of the method to reveal fingerprints of various ages and subjected to plausible environmental histories was demonstrated. Comparison of this enhancement methodology with commonly used fingerprint enhancement methods (dusting with powder, application of wet powder suspensions and cyanoacrylate fuming) showed promising performance in selected scenarios of practical interest.
منابع مشابه
Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices
A carbazole-based polymer (poly(tris(4-carbazoyl-9-ylphenyl)amine) (PtCz)) is electrosynthesized on an indium tin oxide (ITO) electrode. PtCz film displays light yellow at 0.0 V, earthy yellow at 1.3 V, grey at 1.5 V, and dark grey at 1.8 V in 0.2 M LiClO4/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The ∆T and coloration efficiency (η) of PtCz film are 30.5% and 54.8 cm2·C−1, respectively, in ...
متن کاملThe influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives.
This paper describes the electrochromic properties of a series of poly(3,4-alkylenedioxythiophene) (PXDOT) derivatives featuring various ring sizes and substitutions. The presence of a bulky group on the monomer resulted in a polymer possessing a more-open morphology, which promoted reversible ionic transfer. We used an electrochemical quartz crystal microbalance and cyclic voltammetry to inves...
متن کاملTransparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4‐Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a tr...
متن کاملApplication of Nanostructures in Electrochromic Materials and Devices: Recent Progress
The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly en...
متن کاملPrinted passive matrix addressed electrochromic displays
Flexible displays are attracting considerable attention as a visual interface for applications such as in electronic papers and paper electronics. Passive or active matrix addressing of individual pixels require display elements that include proper signal addressability, which is typically provided by non-linear device characteristics or by incorporating transistors into each pixel. Including s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 24 شماره
صفحات -
تاریخ انتشار 2012